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Presentation Overview

• What is multidisciplinary design optimization?
– Why use it?
– How is it used?

• Example MDO application

• Computational challenges in MDO

• Example surrogate modeling application
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What is MDO?

• Multidisciplinary design optimization (MDO):

– is a methodology for the design of systems in which
strong interactions between disciplines motivates
designers to simultaneously manipulate variables in
several disciplines

– involves the coordination of multiple disciplinary analyses
to realize more effective solutions during the design and
optimization of complex systems
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Simulation-Based Design Architecture
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Design Server Interactions
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System-level Objective
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How is it used?

• Using MDO involves:

– decomposing the system into multiple subsystems or
disciplinary analyses

– developing mathematically models and analyses for:

• the “parent” system

• each subsystem and its interactions

– selecting an appropriate MDO formulation and
algorithm

– solving the MDO problem to generate solutions
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Space of feasible
designs

Initial guess

Nearest feasible
point

optimum

Stays feasible

Multiple Discipline Feasible

• Get feasible and stay feasible
• Implies each iteration is a two part process:

– move to improve design
– re-establish feasibility
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Space of feasible
designs

Initial guess optimum

Individual Discipline Feasible

• Go straight to optimum
• Since optimum usually on boundary, not

feasible until optimal
– equivalent to discrepancy = 0
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Collaborative Optimization

Decompose
system into
smaller units
that can be
individually
optimized
and then
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Underwater Exploratory Vehicle

• 4 Subsystems:
– Guidance & Control
– Instrumentation
– Power
– Propulsion

• Subsystem
analyses
developed by 
Erik Halberg
(M.S., ME)

• 7 Design Variables:
– Volumes

Initial
Design
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Underwater Vehicle Example
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Underwater Exploratory Vehicle
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Vehicle Performance

• MDO formulation yields
superior performance:
– Speed
– Endurance
– Effectiveness

0

5

10

15

20

25

30

35

40

S
pe

ed

E
n

d
u

r

E
ff

ec
t

Trad.

Bi-Lev
GP



Applied Research Laboratory

UNCLASSIFIED

UNCLASSIFIED

Vehicle Optimization

• Final Design:
– Slightly different

configurations

• Solution Time:
– 1 minute vs. 3 hours 0
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Vehicle Configurations
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Computational Challenges in MDO

• In MDO, computer simulation codes are:

– often “black-box” in nature

– discipline-specific

– composed in different languages (e.g., Fortran, C, Java)

– distributed, both geographically and on different
computer platforms

– computationally expensive due to fidelity of modeling and
need for accurate results
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Surrogate Models for MDO

• Surrogate models are fast, simple approximations
of computationally-expensive computer simulations
and/or analyses

• They provide a “model of a model” which can be
used in place of the original computer simulation

• Surrogate modeling can be used to generate “smart
objects” that can be used in place of the original
analyses and integrated within any SBD
infrastructure
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Overview of Surrogate Modeling
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Surrogate Models in MDO
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Each sub-system or disciplinary analysis can be replaced by a
surrogate model and invoked by the higher-level coordinator
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Aerospike NozzleVenture Star RLV

Application: Rocket Nozzle

• Utilize surrogate models to facilitate multidisciplinary
design and optimization of an aerospike rocket
nozzle for the next generation shuttle
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Closing Remarks

• MDO involves the coordination of multiple
disciplinary analyses to realize more effective
solutions during the design of complex systems

• Surrogate models can be used to address many of
the computational challenges associated with MDO

• MDO formulations that incorporate uncertainty are
currently being investigated
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